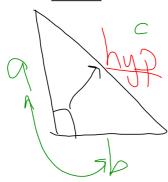
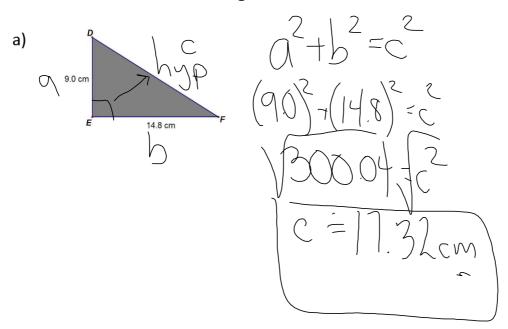
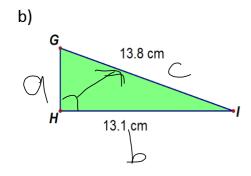
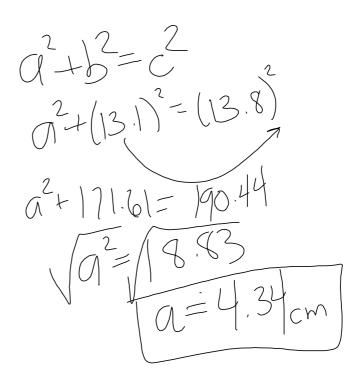
Review of 2D Right-Angle Trigonometry


MCR 3U

Review of Pythagorean Theorem


• Pythagorean Theorem is used when there are two known side lengths of a right-angled triangle, and you are solving for the third side length.


$$\boxed{a^2+b^2=c^2}$$


- Where:
 - ullet Side length a and b represent the smaller side lengths of the triangle.
 - ullet Side length c represent the hypotenuse (the longest side length).
 - The hypotenuse is <u>ALWAYS</u> across from the right angle in the triangle.

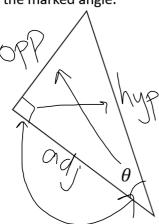
Solve for the unknown side length.

Review of Primary Trigonometric Ratios

• What are the three trig ratios that we know???

• For every angle in a right angled triangle, there is a hypotenuse, an adjacent side length, and an **opposite** side length.

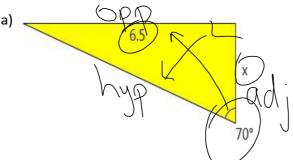
Reciprocal Trigonometric Ratios


• What is the parent function for a reciprocal?

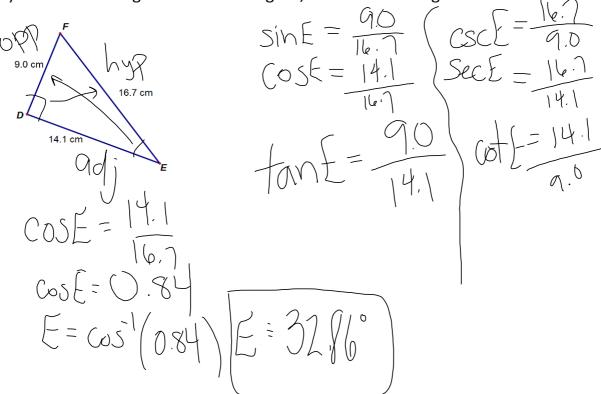
 $f(\chi) = \frac{1}{\chi}$

• Reciprocal trig ratios just means we flip the ratio and put it in the denominator.

 $\frac{\csc\theta}{\cos \theta} = \frac{1}{\sin \theta} \quad \frac{\sec \theta}{\sec \theta} = \frac{1}{\cos \theta} \quad \frac{\cot \theta}{\cot \theta} = \frac{1}{\tan \theta}$


Label the following triangle by its hypotenuse, adjacent and opposite sides given the marked angle.

NOTE:


• Using the acronym SOH CAH TOA (from grade 10) can be useful to solve problems related to right-angled trigonometry.

• Solve for the unknown variable:

Jano adi

b) Write ALL six trig ratios first for angle E, then solve for angle E.

 George is standing 10m away from a flagpole. As he looks up, George measures his angle of elevation to be 42° to the top of the flagpole. How tall is the flagpole?

Homework

• Finish prerequisite skills as much as you can!

P. 220 73-5,7,8-12

• Section 4.4, Page 255, #1a,2a,3,4 (try to solve at least one of these using a reciprocal trig ratio).