Lets look at some equations and graphs on Desmos

Compare the equation y = (x - s)(x - t)to the graph, what do you notice?

If a graph has 2 x-intercepts at $\frac{7}{2}$ and $\frac{\sqrt{}}{2}$, then the equation of that curve is:

$$y = (x - z)(x - v)$$

If we know ANY other point (x, y) on the curve then we can solve for "a"

$$y = a(x-2)(x-v)$$

Forms of a Quadratic Equation

Determine an equation for the following:

a) A parabola with x-intercepts of -2 and 3, P_{assing} through y = a(x - c)(x - t)

$$y = a(x - s)(x - t)$$

$$y = a(x - (-\lambda))(x - 3)$$

$$y = a(x + \lambda)(x - 3)$$

$$6 = a(5 + \lambda)(5 - 3)$$

7 6= a(7)(2) 6= a(14) 3= a

b) A parabola with roots of $3 + \sqrt{5}$ and $3 - \sqrt{5}$ and has a y-intercept of 12.

(0,12)

$$y = a(x - s)(x - t)$$

$$y = a(x - (3+\sqrt{5}))(x - (3-\sqrt{5}))$$

$$y = a((x - 3) - \sqrt{5})((x - 3) + \sqrt{5})$$

$$y = a((x - 3)^{2} - \sqrt{5}^{2})$$

$$y = a((x - 3)^{2} - \sqrt{5}^{2})$$

$$y = a(x^{2} - 6x + 9 - 5)$$

$$y = a(x^{2} - 6x + 4)$$

$$y = a($$

3 = 9

(7,4) -> (0,12) 15=3(x2-6x+4) -3x2-18x+12

Determine an equation, in standard form, for the graph.

An arch bridge spans a 48 m wide river and the difference between the height in the middle and the end is 15 m.

a) Draw a picture of this situation.

b) Determine an equation for your graph.

$$y = a(x-s)(x-t)$$

$$15 = a(24-0)(24-48)$$

$$15 = a(24)(-24)$$

$$15 = a(-576)$$

$$-\frac{15}{576} = a$$

$$-\frac{5}{192} = 9$$

