Day 5 - From Patterns to Graphs

Part 1: Direct Variation

Now, we move from patterns with tiles to graphs!

Work with a partner:

Instructions:

1. Think of three different rules, they are to be direct variation and use a multiplier between 1 and 6. Record your rules here:

Rule 1:
$$y = 2x$$

Rule 2: $y = 4x$

Rule 3: $y = 6x$

2. Draw each of the first three positions of your rules here:

- 3. Your teacher will give you a big sheet of graph paper to graph all 3 rules. All rules will be graphed on the same axis. Graph each rule using a different colour and be sure to include a legend that shows what colour goes with what rule. Also, extend your graph to the y-axis.
- 4. Continue your graph to position 5.

Questions:

1. Why do you think the points form a straight line?

each time. Multiplier stays the

- 2. Why do you think that some lines are steeper than others?
- 3. (a) Which rule made the steepest trend line? biggest multiplier

 (b) Which rule made the flattest trend line? owest multiplier
- (c) What connections can you make between the multiplier and the steepness of the trend line?

bigger the multiplier, steeper

The multiplier (aka rate of change) is also called <u>\(\sqrt{lope} \)</u>.

The point where the graph crosses the y-axis is called y-intercept

starting value initial value

Part 2: Partial Variation

1. With your partner, construct the models for each rule given (use positions 0 to 4). Then, create a graph on the axis provided.

of tiles = position #x 2 + 1

x (position number)	y (number of tiles)
0	1
1	3
2	5
3	7
4	9

4 -6 -:		44	
# of tiles =	position	#	X4+1

x (position number)	y (number of tiles)
0	1
1	5
2	9
3	13
4	17

# of tiles =	position :	# x 3 + 1
--------------	------------	-----------

x (position number)	y (number of tiles)
0	1
1	4
2	7
3	10
4	13

How are these graphs different?

Slope

How are these graphs the same?

y-int(graph)
constant(ean)

2

Pu

2. With your partner, construct the models for each rule given (use positions 0 to 4). Then, create a graph on the axis provided.

of tiles = position # x 3 + 2

x (position number)	y (number of tiles)
0	ک
1	5
2	8
3	11
4	14

# of tiles	= position	#	х	3	+	1

x (position number)	y (number of tiles)
0	l
1	4
2	7
3	10
4	13

# of tiles =	position	# x 3 + 4

x	y
(position	(number of
number)	tiles)
0	4
1	7
2	10
3	13
4	17

How are these graphs different?

How are these graphs the same?

Pull