

5.3.2: Key Features of Quadratic Relations

Terminology	Definition	How Do I Label It?	Graph A	Graph B
Vertex	The maximum or minimum point on the graph. It is the point where the graph changes direction.	(x,y)	(4,0)	(3.5,6)
Minimum/ maximum value	Max Min	M=n= M=x=	Min=O	Max=6
Axis of symmetry	Vertical line that cuts a parabola in	to X=	x=4	x=3.5
y-intercept	crosses the y-axis	y-int=	y-in1 =3.5	שיייל
x-intercepts	Crosses Te x-axis		x-int	x-int
Zeros	(x-ints)			

Label the graphs using the correct terminology.

5.4.1: Key Features of a Parabola

Write the feature of a parabola that you were given in the centre of the graphic. Complete the chart. Include sketches and graphs with your work.

Exponent Rules - Review Match

$$(a^{4})(a^{4})$$

$$=(a \cdot a \cdot a \cdot a) \cdot (a \cdot a \cdot a \cdot a)$$

$$= a^{8}$$

$$= a^{8}$$

$$= xxxxx$$

$$\frac{\chi}{\chi^{4}} = \chi^{3}$$

$$= \frac{\chi \chi \chi \chi \chi \chi \chi}{\chi \chi \chi \chi}$$

$$1. a^m \cdot a^n = a^{m+n},$$

2.
$$\frac{a^m}{a^n} = a^{m-n}, \quad (a \neq 0),$$

$$3. \qquad (ab)^m = a^m b^m,$$

4.
$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, \quad (b \neq 0),$$

$$5. \qquad (a^m)^n = a^{mn}.$$

Therefore

This is true for ALL negative exponents
$$x^{-y} = \frac{1}{x^{y}} x^{-3} = \frac{1}{a^{3}} - x = \left(\frac{b}{a}\right)^{x}$$

Therefore

$$x^{0} = 1$$

Is this true for ALL terms that have a zero exponent?

Yes, any term to the power zero equals 1

$$(235.892x^{4}y^{7}z^{-3})^{0}$$
= 1

Examples
$$\frac{5 \text{ inplify}}{(2 \times 9)}$$
 $\left(\frac{x^7}{x''}\right)^2$

$$= \frac{3}{2} x^2 y^3 = \left(x^{-4}\right)^2$$

$$= \frac{317}{142} x^{17} y^{-21}$$

$$= \frac{317}{142} x^{17} y^{-21}$$

$$= \frac{317}{142} x^{17} y^{-21}$$

