Graphing Quadratics

Vertex Form
$$y = a(x - h)^{2} + k$$

$$|a|>1 -> stretch$$

$$|c|<1 -> conpress$$

$$|c|<1 -> conpress |c|<1 -> conpress |c|<1$$

If a quadratic equation is in vertex form we can graph it by starting at the vertex and making a stretch or compression on $y = x^2$.

Graph the following parabolas

Graphing Quadratics

Factored Form

$$y = a(x - s)(x - t)$$

If a quadratic equation is in factored form we can graph it by placing points at the x-intercepts. Then finding the vertex.

To find the vertex in factored form:

We know that parabolas are symmetrical. So the x coordinate of the vertex must be at the midpoint of the two x-intercepts.

If we substitute this value into the equation we will determine the y coordinate

Graph the following parabolas

$$y = (x - 1)(x + 5)$$

Steps

- 1. Place points at the x-intercepts
- 2. Determine the vertex
- 3. Connect the dots

$$y = -2(x + 3)(x + 5)$$

$$y = 0.1(x - 6)(x + 4)$$

pg. 185 # 2 pg. 192 # 4