Transformations of Logarithms

Power Law.notebook December 07, 2018

Logarithm Laws

Power Law of Logarithms

$$|_{OO_bO}^{\times} = \times |_{OO_bO}$$

Evaluate

log₂8⁵

$$= 5(692) = 3$$

$$= 5 \times 3$$

$$= 15$$

 $\log_{3}(3^{2})^{4}$ $\log_{3}9^{4}$ $= 4(09_{3})^{2}$ $= 8(09_{3})^{3}$ $= 8(09_{3})^{3}$

 $\log_{5} 125$ $= \log_{5} (125)$ $= 2(\log_{5} 125)$ $= 2(\log_{5} 5)$ $= 2(\log_{5} 5)$ $= 3(\log_{5} 5)$ $= 3(\log_{5} 5)$

We can use the power law to solve for an unknown exponent, by taking the log of both sides.

Ex. Solve for x

Jake puts \$1000 into a bank account that pays him 4% per year, compounded monthly. How long does Jake need to keep his money in the bank before it will double?

$$A = A_{0}(1+i)^{t}$$

$$A = 1000(1+0.00333...)$$

$$2000 = 1000(1.00333)^{t}$$

$$2 = (1.00333)^{t}$$

$$\log 2 = \log 1.00333$$

$$\log 2 = t \log 1.00333$$

Change of Base Formula

Evaluate

 $\log_{3} 21$

 $\log_{\frac{1}{2}} 20$

$$= \frac{\log 20}{\log \frac{1}{2}}$$

pg. 347 # 1 - 6, 9, 10