Rate of Change

Average rate of change:

- the change in the dependent variable over a specific interval.
- The slope of the secant between two points on a curve.

A.R.o.C. = Slope
$$= \frac{rise}{rvn}$$

$$= \frac{\Delta y}{\Delta x}$$

$$= \frac{y_2 - y_1}{x_2 - x_1}$$

Determine the average rate of change for the given function on the intervals:

a) [-1, 0]
$$A(-1,0) = \frac{2-0}{0-(-1)}$$

A.R.o. C. $B(0,2) = \frac{2}{0}$

b) [0, 2]
$$5lope = \frac{2}{2}$$
 $= -1$

A.R.o.C. =
$$\frac{0}{3}$$

A football is kicked into the air and its height is given by the equation, $h(t) = -4.9t^2 + 14t + 1$

Determine the average rate of change of the height of the football during the first second. First two seconds.

$$h(0) = -4.9(0)^{2} + 14(0) + 1$$

$$= 1$$

$$h(1) = -4.9(1)^{2} + 14(1) + 1$$

$$= 10.1$$

$$= 10.1$$

$$R.o. C [0,1]$$

$$\frac{52 - 51}{72 - 71}$$

$$= \frac{10.1 - 1}{1 - 0}$$

$$= 9.1 \text{ m/c}$$

$$h(0) = 1$$

$$h(2) = -4.9(2) + 14(2) + 1$$

$$= 9.4$$

$$= 9.4$$

$$= 8.4$$

$$= 4.2 \text{ m/s}$$

Instantaneous Rate of Change

- change in the dependant variable at a specific point
- corresponds to the slope of a tangent of a curve

I.R.o.C. =
$$\frac{y_{\lambda} - y_{1}}{x_{\lambda} - x_{1}}$$

Instantaneous rate of change could also be estimated using a graph

Estimate the rate of change of f(x) at the points (0, 0) and (-1, 0)

R.o.C at
$$(-1,0)$$

$$= \frac{-3}{1}$$

Estimate the instantaneous rate of change of the height of the football at 2 seconds

$h(t) = -4.9t^2 + 14t + 1$		ι Λ
Interval	L(t) = -4.9 t2+14++1	Average Rate
(1,2)	h(1) = 10.1 * from before*	10-1-9.4
	h(1) = 9.4	= 1 - 2
(19)	h(2) = 9.4	9.911-9.4
(1.9,2)	h(1.9)=-4.9(1.9)2+14(1.9)+14(1.9)	1.9 - 2
		= -5.11
	= 9.911	2 J.11
	412)=9.4	9.4-9.45551
(1.99,2)	1(1.99) = 9.4555)	2-1.99
		<u>-</u> 5.55
		7.00
(1.999 2)		
(1,(1,2)	>	- 5.55551
	,	
		roaching
		5.6
i. the	I.R.o. Cat	t = 2
	stimated to	be
$-5.6 \mathrm{m/s}$		
J. U . 1 3		

Homework

pg. 62 # 5, 6

pg. 72 # 5, 7