MCR 3U

Rational Exponents

Minds On!

Consider this...

How can we write 41 as a product of two powers with base 4?

$$4^{1} = 4^{2} 4^{2}$$
 ... What is?. $0 = 0$

Therefore, the rational exponent $\frac{1}{2}$ is the same as a $\frac{1}{2}$ is the same as a $\frac{1}{2}$.

$$8^{1} = 8^{?}8^{?}8^{?}$$

Therefore, the rational exponent $\frac{1}{3}$ is the same as a $\frac{1}{3}$ is t

Therefore, the rational exponent $\frac{1}{4}$ is the same as a $\frac{1}{4}$.

Do we notice a pattern?

In general, when working with rational exponents:

$$\chi^{\frac{1}{n}} = \sqrt[n]{\chi}$$

$$x^{\frac{m}{n}} = (\sqrt[n]{x})^m \text{ OR } x^{\frac{m}{n}} = \sqrt[n]{x^m}$$

Action!

Example 1:

Write the following in radical form.

a)
$$x^{\frac{3}{5}} = (5)$$
 b) $-a^{\frac{1}{2}} = (5)$

Example 2:

Write the following in exponential form.

a)
$$\sqrt{z} = 2^{\frac{1}{2}}$$
 b) $(\sqrt[4]{a})^5 = 2^{\frac{5}{4}}$

In English, if we have $\sqrt{81}$, this means "what are two of the same numbers that multiply that given the same numbers are two of the same numbers."

Example 3:

Evaluate without the use of a calculator.

Remember! Exponent laws still apply. Also, it would be helpful to memorize square/cube root Homework: Section 3.3, Page 175-176, #1-6

