Solving Inequalities Algebraically

Solving a polynomial function algebraically means:

When solving an inequality we do the same thing.

But then look at the intervals between the zeros

$$\frac{9x}{x^2}$$
 Solve
 $x^2 + 3x + 2 > 0$
 $(x+1)(x+2) > 0$
 $x+1=0$ $x+2=0$
 $x=-1$ $x=-2$

Solve

$$(x+3)(2x-3) > 0$$

1. What are the zeros?

2. Create a table showing the intervals

	(-00,-3)	-3	(3,3)	3/2	(生,00)
(x+3)		0	+	+	+
(2x-3)		(0	+
(f(x)	+	0		0	+

- 3. Check any value between the zeros and in the domain $(-\infty,a)$ and (b,∞)
- 4. Determine if the function is positive or negative on that interval.

You can also check the values in the original function

$$(x+3)(2x-3)>0$$

Zeros (-3) and (3)
 $(-4+3)(2(-4)-3)$
 $=(-1)(-11)$
 $=11$ \rightarrow positive $=-9 \rightarrow Neg$.

Homework

pg. 138 # 4, 6, 8

TEST WEDNESDAY

Review pg. 140 - 141