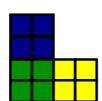
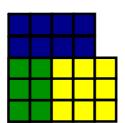
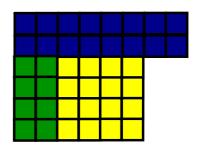

Combinations of Functions


Determine an equation relating the number of squares to the stage number for the following pattern.


Stage 1



Stage 3

Stage 4

Stage Number	Blue Tiles	Green Tiles	Yellow Tiles	Total Tiles
1	7	2		5
2	4	4	Ч	12
3	8	6	9	23
4	16	8	16	40
5	32	10	25	67
n	2	2n	η 2	

Equation for Blue tiles: $f(x) = 2^{-1}$

Equation for Green tiles: $g^{(x)} = \lambda_n$

Equation for Yellow tiles: $h(x) = \int_{-\infty}^{\infty}$

Equation for the pattern:

$$\Gamma(x) = f(x) + g(x) + h(x)$$

$$= 2^{x} + 2x + x^{2}$$

Superposition Principle:

the sum of two or more functions can be found by adding the ordinates of the functions at each abscissa

Student council has decided to sell t-shirts to raise money for a semiformal. There is a fixed cost of \$200 to set up the printing, plus \$5 per shirt to make them. Coulcil has decided to sell the t-shirts for \$10 each.

a) Write an equation to represent the total cost to produce the t-shirts

$$C = 200 + 5t$$

b) Write an equation to represent the revenue from the t-shirts

- c) Graph both of these functions on the same axis
- d) Determine a profit function.

$$P = R - C$$

 $P(t) = 10t - (200 + 5t)$
 $= 5t - 200$

e) Under what circumstances does council lose money? make money?

f) Determine the domain and range for all 3 functions in the context of this problem.

$$\frac{\text{Cost}}{\text{R}} \quad D \rightarrow \{x \in I \mid x > 0\}$$

$$\text{R} \rightarrow \{y \in 5I \mid y > 200\}$$

$$\text{Revenue} \quad D \rightarrow \{x \in I \mid x > 0\}$$

$$\text{R} \rightarrow \{y \in 10I \mid y > 0\}$$

$$\text{R} \rightarrow \{y \in I \mid x > 0\}$$

$$\text{R} \rightarrow \{y \in I \mid y > -200\}$$

$$\text{R} \rightarrow \{y \in I \mid y > -200\}$$

pg. 424 # 1 - 6, 10

