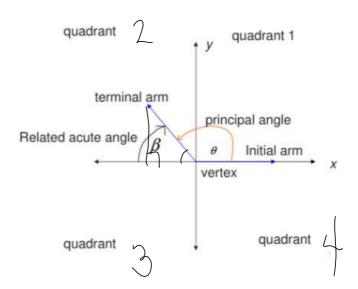
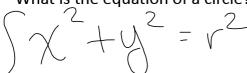

The Unit Circle: Angles Between 0° and 360°

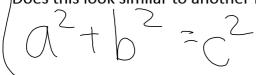
MCR 3U


Definitions

- Initial Arm: The arm that stays STATIONARY (i.e., does not move) which lies on the positive x-axis.
- Terminal Arm: The arm that rotates depending on the measure of angle θ .

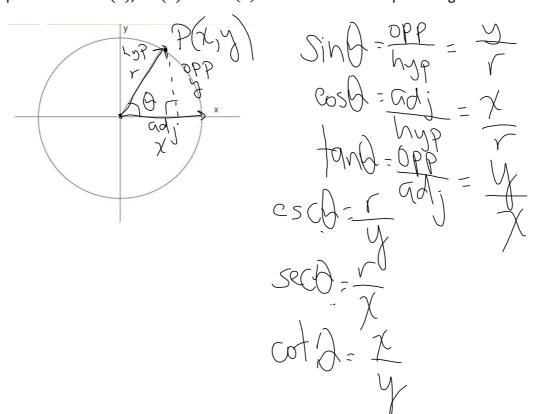

Definitions con't

- Principal Angle: The angle between the terminal arm and the positive x-axis (measured counterclockwise)
- Related Acute Angle: The angle between the terminal arm of an angle and the x-axis, if the principal angle is greater than 90° .

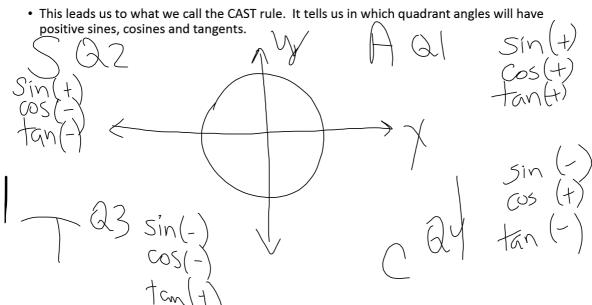


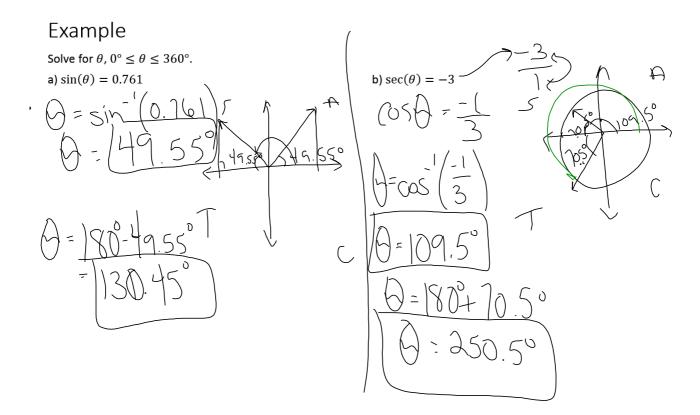
Recall

• What is the equation of a circle?

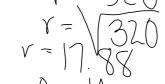


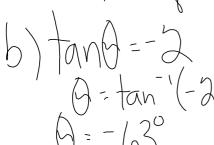
• Does this look similar to another formula we know?

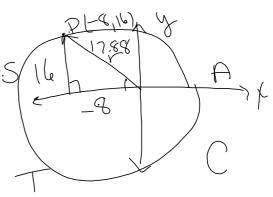

Introduction to the Unit Circle

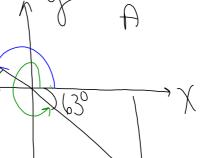

• Assume we take a circle with radius 1. In general, how can we write the expressions for $\sin(\theta)$, $\cos(\theta)$ and $\tan(\theta)$? What about the reciprocal trig ratios?

 The calculator always wants to give us <u>ACUTE</u> angles when we look them up. But, in reality, it is possible to have <u>OBTUSE</u> angles as well. We call these angles **co-terminal** angles to each other.




Example 2

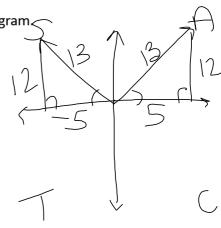

- P(-8,16) lies on the terminal arm of angle θ .
- a) Determine the **EXACT** values for all six trigonometric ratios for θ .
- b) Solve for all possible values of θ , $0^{\circ} \le \theta \le 360^{\circ}$.


$$Sin\theta = \frac{1}{17.88} = 0.89$$

 $Cos\theta = \frac{1}{17.88} = 0.89$

$$CSCO = \frac{17.88}{16} = 1.12$$

$$640 = \frac{-8}{16} = -0.5$$


Example 3

• If $\csc(\theta) = \frac{13}{12}$, what is the value of $\cos(\theta)$? Illustrate with a diagram <

$$COS() = \frac{1}{x}$$

$$\chi^{2} + \chi^{2} = \chi^{2}$$
 $\chi^{2} + \chi^{2} = \chi^{2}$
 $\chi^{2} + \chi^{2} = \chi^{2}$
 $\chi^{2} + \chi^{2} = \chi^{2}$
 $\chi^{2} + \chi^{2} = \chi^{2}$

$$1050 = \frac{5}{13}$$
 $0R$
 $0SQ = \frac{5}{13}$

Homework

- Section 4.2, Page 237-239, #1-5
- NOTE: For #1-3, write down ALL SIX TRIGONOMETRIC RATIOS, not just the three primary trigonometric ratios!!!